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Abstract—Goal: In patients with coronary artery disease,
the prediction of future cardiac events such as myocardial
infarction (MI) remains a major challenge. In this work, we
propose a novel anatomy-informed multimodal deep learn-
ing framework to predict future MI from clinical data and
Invasive Coronary Angiography (ICA) images. Methods:
The images are analyzed by Convolutional Neural Networks
(CNNs) guided by anatomical information, and the clinical
data by an Artificial Neural Network (ANN). Embeddings
from both sources are then merged to provide a patient-
level prediction. Results: The results of our framework on a
clinical study of 445 patients admitted with acute coronary
syndromes confirms that multimodal learning increases the
predictive power and achieves good performance (AUC:
0.67 ± 0.04 & F1-Score: 0.36 ± 0.12), which outperforms
the prediction obtained by each modality independently as
well as that of interventional cardiologists (AUC: 0.54 &
F1-Score: 0.18). Conclusions: To the best of our knowledge,
this is the first attempt towards combining multimodal data
through a deep learning framework for future MI prediction.
Although it demonstrates the superiority of multi-modal ap-
proaches over single modality, the results do not yet meet
the necessary criteria for practical application.
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Impact Statement— Our novel multimodal deep learning
framework, integrating clinical data and coronary angiog-
raphy images, outperforms single-modality methods and
expert predictions in predicting myocardial infarction risk.

I. INTRODUCTION

CORONARY artery disease (CAD), a leading cause of
death worldwide [1], refers to a disease of the coronary

arteries that supply blood to the heart muscle. The disease results,
primarily, from the development of plaques of atherosclerosis in
the arterial wall, which ultimately lead to narrowings (stenoses)
and reduced blood flow. In the acute setting, CAD takes the form
of an acute coronary syndrome (ACS), with the most feared man-
ifestation being a myocardial infarction (MI) resulting from the
rupture of a plaque of atherosclerosis and the subsequent, abrupt
interruption of coronary blood flow. The resulting necrosis of
the heart muscle can lead to numerous complications including a
reduction in heart function (heart failure), arrhythmia (including
cardiac arrest), and death.

However, CAD is a complex pathological process with nu-
merous factors that drive its development, its progression, and
its risk of provoking an MI. At a local level, the diameter of
the stenosis does correlate with the risk of MI, but it remains
insufficient as a predictor of MI, as highlighted by the influence
of other local factors such the hemodynamic impact of the
stenosis [2]. At a patient level, important drivers of CAD include
cardiovascular risk factors (e.g., age, sex, hypertension, diabetes,
dyslipidemia), all of which can influence the risk of MI. As
a result, in clinical practice, future MI prediction remains a
challenge. This is highlighted by the fact that up to 10% of
patients with stenoses deemed non-significant (i.e., stenoses
<50% without a significant hemodynamic impact) still present
an MI or a need for urgent revascularization (i.e., invasive
treatment such as stenting) in the ensuing two years [3]. Even
among patients treated for an MI, the risk of short- and long-term
adverse outcomes remains significant. Reinfarction represents a
significant cause of poor outcomes among MI patients, with rates
as high as 4% at one year and 7% at three years [4].

In both acute and chronic settings, invasive coronary an-
giography (ICA) remains the gold standard investigation for
the diagnosis and evaluation of CAD in clinics. ICA involves
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Fig. 1. Annotated ICA images of a patient; two views for each of three different arteries. The boxes indicate different anatomical segments and
the red dots that the segment is responsible of future MI.

continuous X-ray (i.e., fluoroscopy) with simultaneous injection
of radiopaque contrast into the coronary arteries, thus permit-
ting the identification of coronary stenoses. In current clinical
practice, stenosis severity is still often only determined by the
physician’s estimation of the percentage reduction in arterial
diameter. With this approach, a diameter stenosis ≥70% is
generally considered a strong indicator of a clinically significant
lesion, and thus a criterion for treatment (e.g., coronary stenting).
New innovative approaches are thus needed to drive progress in
this field.

Recent advances in machine learning (ML), in combination
with the availability of multimodal data, show promise for
capturing and quantifying the complexity of CAD. Some works
have already focused on predicting MI in the next months from
patients’ clinical data using traditional ML algorithms such as
Logistic Regression, Random Forest, and Gradient Boosting,
(e.g., [5], [6]), with limited success. At the same time, convolu-
tional neural networks (CNNs) have been successfully applied in
detecting stenoses and inferring their severity directly from ICA
images [7], but without tackling the challenge of future event
prediction. First step towards future MI prediction from ICA
images was performed in [8] and [9], where a deep learning
framework was able to provide significant gains in predicting
future culprit lesions, i.e., lesions that lead to future events. This
study however was performed at a lesion level and on patients
with stable coronary disease. Given the complexity of CAD and
the numerous influencers of the risk of future MI, a multimodal
approach that extracts knowledge from all available patient data
appears crucial for predicting future events.

In this work, we depart from the task of lesion-level MI
prediction from ICA images, instead tackling the challenge
of patient-level MI prediction using both ICA and clinical
information. In particular, we propose an anatomy-informed
deep learning framework that combines ICA imaging views

from the three different arteries of the coronary tree (see Fig. 1
for an example of the different arteries), cardiologist guidance
on significant anatomical regions, and clinical data in order
to predict the occurrence of future MI in patients presenting
with an acute coronary syndrome at baseline. The problem is
particularly challenging for ML settings not only due to the
systemic and biological complexity of the disease but also
due to the frequency of the disease. Due to its invasive nature,
patients undergo ICA only if there is significant justification.
Moreover, out of all these patients, only a small percentage will
experience an MI in the future, limiting further the number of
MI events. This low and unbalanced data regime is particularly
challenging for ML algorithms.

To partially overcome these issues, we exploit our knowl-
edge of the coronary artery tree, and cast the problem as a
multi-objective learning framework, with the goal to predict
MI both at an artery (auxiliary task) and at a patient level
(main task). The MI prediction at an artery level is achieved by
learning discriminative features from the corresponding artery
views using anatomy-informed CNNs, combined with learned
representations of the clinical data, computed by an ANN. These
jointly learned artery-specific representations are then concate-
nated to obtain a prediction at a patient level, which is provided
by another ANN. The results obtained in a clinical cohort of 445
patients confirm that considering jointly both image modalities
and clinical data (AUC: 0.67± 0.04 & F1-Score: 0.36± 0.12)
provides significantly better predictive power than learning from
each modality independently (only using ICA images: AUC:
0.64± 0.04 & F1-Score: 0.30± 0.11 and only using clinical
data: AUC: 0.63± 0.04 & F1-Score: 0.28± 0.06). The multi-
modal learning scheme also outperforms the prediction of inter-
ventional cardiologists from the ICA images (AUC: 0.54± 0.04
& F1-Score: 0.18± 0.04). To the best of our knowledge, this
is the first attempt towards providing a global prediction score
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for future coronary artery events by exploiting, in a data-driven
manner, conjointly the patients’ clinical data and their ICA
images.

The rest of the paper is organized as follows. First, we provide
a description of the clinical study, the different data modali-
ties, and the cardiologist-guided annotation of the anatomical
segments of the coronary artery tree. Then, we present our
novel multi-objective learning approach for predicting MI from
multimodal data. Finally, we illustrate the performance of our
framework on the clinical study and compare it with different
baselines that rely on learning from a single modality or inferring
from interventional cardiologist expertise.

II. MATERIALS AND METHODS

A. Clinical Study

The SPUM-ACS (Special Program University Medicine -
Acute Coronary Syndromes) registry is a cohort of consecutive
patients admitted with acute coronary syndromes (MI or unsta-
ble angina) to four university hospitals in Switzerland between
2009 and 2017. Further details of this registry have been reported
previously [10]. For the present study, patients hospitalized with
ICA images available for analysis are included. The clinical
endpoint considered in this work is MI, i.e., we consider patients
who had an MI in the next five years after the acute event (the
acute coronary syndrome at baseline). Our approach could be
generalized to other datasets that include enough ICA views and
similar clinical information about the patient.

1) ICA Images: The dataset consists of clinical data and
ICA images of 445 patients, out of which 47 experienced an
MI during the follow-up period. Six ICA images were extracted
from the baseline ICA of each patient: three arteries (left
anterior descending (LAD), left circumflex (LCX), and right
coronary artery (RCA)) viewed from two angles with ≈ 30◦ of
difference. An illustrative example is shown in Fig. 1. Most of
the ICA images are 1524 × 1524 pixels in size. Those that have
different sizes are cropped or interpolated to this size. Only
patients with at least one view of each artery are considered. In
order to have a fixed number of views per patient, for patients
with only one view, we consider that view twice, while for
patients with more than two views, we randomly select two
views per patient. The initial number of patients in the dataset
is 709, but for 264 of them, the dataset does not contain at least
one view of each artery, or contain invalid values, and thus only
445 patients are considered.

2) Cardiology-Guided Annotation of Anatomical Seg-
ments: Each of the views is annotated by an interventional
cardiologist into anatomical segments as defined by the SYN-
TAX system [11] (colored boxes in Fig. 1, with the color code
being consistent across patients). Each segment is then labeled
as being responsible for future MI or not (red dots in Fig. 1). The
anatomical segments will be used as attention masks in order to
guide the learning of the proposed algorithm toward important
regions of the coronary artery tree.

3) Clinical Data: The clinical data consists of sex, age,
body mass index, diabetes, smoking, hypertension, hypercholes-
terolemia, previous cardiovascular disease, Killip class, previous

cardiac arrest, and kidney function, which are known to be
cardiovascular risk factors. The non-categorical data are normal-
ized (mean subtracted and divided by the standard deviation).
Each missing data is replaced by the median, if it belongs to a
continuous column (i.e., values of the column can take any value
in a given range), or by the most frequent value if it belongs to
a categorical column (i.e., values of the column come from a
given set of possible values). The distributions of those features
are presented per group in Table I.

B. A Multimodal Learning Framework for
MI Prediction

1) Proposed Model: We propose a novel, anatomy-
informed learning framework that predicts MI by combining
coronary artery anatomical information from ICA images with
patient-level clinical data, e.g., cardiovascular risk factors. Our
approach takes the images of the different ICA views of the artery
as input along with the patient’s clinical data, permitting the
prediction of MI at an artery level. These artery-level predictions
are then combined in order to predict whether the patient will
have an MI. A summary of the architecture is illustrated in Fig. 2.
In what follows, we elaborate on each building block of the
architecture, and each data modality.

Imaging data: To extract predictive features from ICA images,
we adapt state-of-the-art image-based deep learning architec-
tures to the specificity of the coronary artery images. For each
main artery of the coronary tree, we propose a CNN-based
architecture, which receives as input the two views of the artery
as well as the corresponding attention masks that indicate the
bounding boxes drawn by the physicians. These masks help the
network focus on the main anatomical segments of the coronary
artery tree and not on the background, see Fig. 3. Given that
both views represent a snapshot of the same 3D artery from
different angles in the 2D space, we use this anatomy-informed
fact to process them jointly through two siamese networks as
we expect that similar features are present in both pictures. The
backbone is a ResNet-18 network [12], which is a well-known
state-of-the-art model. We then achieve a global representation
of the ICA images by concatenating the representations of both
views, followed by average pooling, flattening, and dropout,
in order to reduce the dimension of the embedded space and
to diminish overfitting. Finally, this global representation of
the views is given as input to a classification layer, which is
responsible for predicting MI in each artery only from imaging
data. This global representation will be used for the multimodal
prediction, jointly with the embedding of the clinical data.

Clinical data: In parallel, clinical data are processed through
two hidden layers of 50 and 10 neurons (Fully connected (FC)
layer, batch normalization, ReLU activation, dropout), inspired
by [13]. The feature representation extracted from this pipeline
defines the embedding of the clinical data. This embedding is
given as an input to a classification layer (FC, Sigmoid), which
is responsible for predicting patient-level MI only from clinical
data, which provides another auxiliary loss. This embedding
will also be used for the multimodal prediction, jointly with the
images’ embedding.
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TABLE I
DEMOGRAPHIC TABLE: DISTRIBUTION OF THE CLINICAL FEATURES W.R.T. GROUPS

Fig. 2. Anatomy-informed multimodal framework for MI prediction. The patient data is processed by the clinical data block and the two views of
each artery are processed by artery blocks. A prediction is provided for each artery and the prediction at the patient level is the maximum of these
three predictions. Note that the decision at the artery level is influenced by the clinical data.

Patient-level prediction (multimodal model): Once ICA and
clinical data have been processed independently, their represen-
tations are combined in order to achieve a multimodal embed-
ding per artery. We follow a strategy similar to [14] and [15],
by concatenating the representations of the ICA images and the
clinical data, and further analyzing them through an FC layer
activated by a Sigmoid function. This output is used to compute
the probability of an MI for a given artery. Finally, the prediction
at the patient level is defined as the worst-case prediction of

the three arteries, i.e., a single MI prediction at an artery level
is enough to predict MI at a patient level. The independent
prediction for each artery is motivated by the anatomy-informed
fact that MI is often a local event, i.e., information from an artery
does not necessarily improve the prediction in another one.

2) Training Procedure: Our multimodal network is trained
by minimizing a loss function (l) that takes into account
each of the building blocks mentioned above. In partic-
ular, we aim to improve the overall MI predictions by
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Fig. 3. Annotated ICA images (left) are converted to a raw image (center) and a mask (right) that indicates the different anatomical segments.
The mask is created by generating Gaussian functions centered on the sections’ rectangle and using the same width and height.

optimizing the artery level predictions from multimodal embed-
dings (lpred(LAD/LCX/RCA)), the patient level predictions from
clinical data (lclinical), and the overall patient-level prediction
from both clinical and artery level embeddings (lpatient). In
addition, for each artery view, we define an auxiliary loss func-
tion that enforces similarity between views in the embedding
space (lsimi(LAD/LCX/RCA)). The loss will be zero if the views
share the same information (this loss helps the model to learn
the features to detect as we expect that both views mostly
contain similar information). This function is set to be the mean
Euclidean distance between the features extracted from the two
pairs of views of the same artery.

Thus, the complete loss that consists of the above-mentioned
terms, can be defined as presented in (1) and (2). The weight
of the main loss (patient level prediction) is always fixed to one
as it is our main target and the others (w = [w1, w2, w3]) are
considered as hyperparameters (ranging from 0 to 1).

l = lpatient + laux, (1)

where

laux = w1 ∗ lclinical

+

[LAD,LCX,RCA]∑

n=artery

w2 ∗ lpred(n) + w3 ∗ lsimi(n). (2)

Given the imbalanced nature of our dataset (47 MI out of
445), we employ the AUC Margin loss function as classifi-
cation loss [16] along with a PESG optimizer [17]. This loss
function serves as a margin-based surrogate for optimizing the
AUC score. It has shown (along with the PESG optimizer)
good performances on the classification of large-scale medical
image datasets [16]. Additionaly, to tackle the imbalance, the
MI samples of the dataset are oversampled (the minority sam-
ples are duplicated until parity is reached). Moreover, different
image-based augmentation methods are applied to ICA images
in the training set (no data augmentation is applied to the clinical
data). Each data augmentation technique has a given probability
of happening, and is applied sequentially to the images in the
following order:

1) Random cropping (probability of happening: 20%): a
subimage is cropped on the image, which can have a
ratio between 75% and 125% of the original image and

between 80% and 99% of the size of the image. The image
is then resized to the input size (bi-linear interpolation);

2) Random rotation (probability of happening: 20%): the
image is rotated between −30◦ and +30◦;

3) Color (probability of happening: 20%): brightness is al-
tered between 80% and 120%, contrast between 80%
and 120%, saturation between 80% and 120% and hue
between −20% and 20%.

For the cropping and rotation, the same values are applied
to the raw image and its mask (otherwise, the mask does not
provide the correct insight). Quantitative analysis regarding the
impact of these augmentation methods have not been conducted;
however, their implementation was deemed necessary to prevent
overfitting the duplicated inputs. Thus, the parameters’ values
have been fixed heuristically.

The weights of the ResNet-18 backbones are initialized with
a pre-trained network on ImageNet [18] (it was found that
pre-trained models reach better performance, even though our
images are not “natural” images). The models are trained using
5-fold cross-validation on the training set, with a similar number
of MI patients in each fold. The multimodal network is trained
during 20 epochs with PESG (gamma: 595, margin: 0.99) and
a batch size of 4. The weight decay and the dropout are fixed at
0.003, and 31% respectively. The learning rate is initially set to
0.077, and a scheduler divides by 10 the learning at each plateau
(3 consecutive epochs without metric improvement). The weight
of artery loss, distance loss, and clinical data loss are set to
0.06, 0.007 and 0.006 respectively. All these hyperparameters
have been selected using naive grid search (iterating over all the
parameter combinations in the selected range).

III. RESULTS

In this section, we evaluate our multimodal frameworks for MI
prediction on the clinical study presented in Section II-A. First,
we introduce our baseline methods that are based on predicting
from each modality independently, as well as a comparison
with the prediction score achieved from the visual inspections
of interventional cardiologists. Next, the obtained results are
discussed.

A. Baselines

a) Single modality: ICA: We truncate the multimodal
model so that it uses only the ICA images, i.e., without the
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TABLE II
DIFFERENT MODALITIES: VALIDATION SCORES (MEAN ± STD) OBTAINED FROM A 5-FOLD CROSS-VALIDATION ON THE TRAINING SET

“Clinical Data Block” in Fig. 2. We compute predictions per
artery and define the patient-level prediction as the worst-case
scenario from each artery. The model is trained using the AUC-
loss (as for the multimodal).

The model is trained for 20 epochs with a PESG optimizer
(gamma: 411, margin: 0.81) and a batch size of 4. The weight
decay is set to 0.007 and the dropout to 0.6%. The starting
learning rate is 0.03, divided by 10 after 3 epochs without
improvement. The weight of the artery loss is 0.002, and the
weight of the distance loss is 0.0008.

b) Single modality: Clinical data: We use only the
“Clinical Data Block” from the multimodal model presented in
Fig. 2 and thus predict MI only based on clinical data.

The model is trained during 300 epochs with PESG (gamma:
470, margin: 0.92) and a batch size of 32. A Kaiming Nor-
mal [19] is used for initialization. The weight decay is 0.0048,
and the dropout is 49.76%. The starting learning rate is 0.004,
divided by 10 after 25 epochs without improvement.

c) Visual inspection from interventional cardiol-
ogists: The exact same set of patients is evaluated by two
blinded interventional cardiologists, who analyzed the ICA
views of each patient and provided their patient-level prediction
of MI.

d) Naive predictor: A naive strategy is applied: it clas-
sifies the sample as positive 10.6% of the time, and otherwise as
negative. This probability corresponds to the distribution of MI
in the dataset (47 MI among 445 patients (10.6%)). Thus, this
benchmark shows the performance of random guesses.

B. Evaluation Metrics

First, the dataset is split into a training set and a testing
set (while conserving the same ratio of positive and negative
in each). Then, the performances are computed by applying a
5-fold stratified procedure on the training set only; the mean
and standard variation across the validation folds are computed.
Finally, a model is trained on the whole training set and tested
on the testing set, which was not used in the previous step.

Four evaluation metrics [20] are considered:
� AUC-ROC measures the balance between the True Posi-

tive Rate and the False Positive Rate;
� Precision measures the percentage of True Positive among

the samples classified as positive;
� Recall measures the percentage of positive correctly

classified;

� F1-Score is the harmonic mean of precision and recall.

C. Performance Analysis

In Table II, we compare the MI predictive performance of
the proposed multimodal framework, as well as the baselines
mentioned above during the 5-fold cross-validation procedure.
We observe that the performance of our multimodal framework
is better than learning from each modality independently, high-
lighting the benefit of extracting predictive features from both.
The performances obtained only from clinical data and only
from ICA are similar, highlighting the difficulty of learning
directly from ICA. This is most likely attributed to several
reasons with the main ones being the limited number of data
points, and in particular MI patients, and the important quantity
of uninformative background in ICA images. At the same time,
the multimodal approach outperforms learning from each of
the single modalities independently. These results confirm our
intuition that each modality contains different information that,
if combined properly, can provide a better predictive score at
a patient level. The low predictive performance achieved from
expert clinicians indicates the complexity of the task and the
importance of building data-driven tools that could assist clinical
decision-making.

Table III shows the performances but by training on the
whole training set and testing on the testing dataset. These
results have to be considered with great care, the main reason
being that the testing dataset contains very few positive cases
(5 MI over 89 patients). Moreover, the results are outside of
the confidence intervals computed from the validation dataset.
However, these results lead to similar conclusions to the ones
presented previously.

D. Alternative Models

a) Alternative single modality: ICA: Different vari-
ations of the single modality ICA model are considered. First,
two losses are used for training, i.e., the AUC-loss (as for the
multimodal) and the Binary Cross Entropy (BCE) loss (opti-
mized by Stochastic Gradient Descent (SGD)). Second, two
different ways for providing patient predictions are compared:
(i) Max analysis: We compute predictions per artery and define
the patient level prediction as the worst-case scenario from each
artery. (ii) Common: We concatenate the output of the Siamese
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TABLE III
PREDICTION PERFORMANCE ON A TEST SET

Fig. 4. Single modality ICA framework for MI prediction. The two views
of each artery are processed separately before being concatenated
together into a bigger feature map. This new feature map is further
processed through convolutional layers and poolings to finally provide
a patient-level prediction. The ResConvBlock is the set of convolutional
blocks connected with skip connections presented in the section III-A.

TABLE IV
DIFFERENT IMPLEMENTATIONS OF SINGLE MODALITY: VALIDATION SCORES

(MEAN ± STD) OBTAINED FROM A 5-FOLD CROSS-VALIDATION ON THE
TRAINING SET

networks for all arteries and process the entire feature repre-
sentation to predict the MI at the patient level. It is represented
in Fig. 4. To improve the discriminative power, we add some
additional layers in the architecture. Those layers are similar
to the ones used in ResNet [12]: max pooling (to reduce the
size of the embedding space), a residual convolutional block
(two convolutional layers with batch normalization and ReLU
activation, connected by a residual connection), average pooling,
flattening, dropout, and finally a classification layer activated
by Sigmoid. We note that these additional layers increase the
total number of parameters of the second model: the Common
approach has five times more parameters than the Max one.

In Table IV, the different implementations of the single modal-
ity models are compared. We notice that the Max approaches
for the ICA modality (taking the maximum of the prediction
of each artery) reaches the same performance as the Common
one (analyzing all the arteries together) while having much fewer
parameters. Overall, using the AUC-loss is better or similar to the

BCE loss. For that reason, our solution uses a Max architecture
trained with AUC-loss. The hyperparameters of those models
can be found in section VI-A.

b) Alternative single modality: clinical data: Dif-
ferent traditional ML classifiers have been considered to predict
MI from clinical data. Their performance is reported in Table V.
We observe that overall all methods obtain comparable perfor-
mance. They all obtained a higher recall than precision, which
is good in the current application, as missing an MI could be
fatal for the patient. ANN slightly outperforms the others and
is more easily implementable in a Neural Network framework
but uses significantly more parameters. The ANN is trained
with AUC and BCE, and the obtained results are compared in
Table IV. The hyperparameters of those ANNs can be found in
section VI-B. Overall, those results are close to the ones obtained
in [5] and [6]. The similarity between the reported performance
across different works that predict future outcomes from clinical
data, despite using different datasets and models, could be a
strong indicator that we may have reached the limits of the
predictive capacity of the clinical data, making the use of ICA
images on top of clinical data necessary for better predictions.

IV. DISCUSSION

To the best of our knowledge, there are no previous studies
that aim to predict a patient’s risk of future MI by combining
both image and patient data via a deep learning framework. Thus
this pilot study represents the first of its kind and demonstrates
the efficacy (albeit modest) of such an approach.

From the cardiology perspective, the importance of this spe-
cific prediction task cannot be understated. Cardiovascular dis-
ease remains the leading cause of death worldwide [1], despite
significant advances in the prevention and treatment of cardio-
vascular disease in recent years. Even with the application of
the best available predictors of cardiovascular risk (e.g. degree
of coronary stenosis, hemodynamic impact of a stenosis, risk
factors such as diabetes and hypertension), a significant number
of patients still go on to experience an MI. This can likely be
explained by the complex pathophysiology of coronary artery
disease. To tackle this complexity, we propose an approach that
integrates pertinent information from different sources.

With regards to the performance of our approach, some av-
erage quantitative comparisons can be performed with other
works that predict future MI in different settings. Compared
to [8], where a deep learning framework was able to predict
future culprit lesions from ICA with an F1-score of 0.57, our
performance is overall lower. This study was performed at a
lesion level and on patients with stable coronary disease. On the
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TABLE V
DIFFERENT ML ALGORITHM FOR MI PREDICTION FROM CLINICAL DATA: VALIDATION SCORES (MEAN ± STD) OBTAINED FROM A 5-FOLD CROSS-VALIDATION

ON THE TRAINING SET

one hand, working at a lesion level is a simplified problem for
deep learning, as it provides as input the exact lesion, as opposed
to the whole artery. At the same time, the clinical cohort of [8]
consists of a completely different population, with stable coro-
nary disease, all of which eventually had an MI. In our setup, the
cohort consists of patients with acute coronary syndromes, with
only 10% suffering from MI in the follow-up period. Thus our
scenario is more representative of real clinical practice where not
all patients will have an MI during follow-up, and the challenge
is identifying the ones that will. Compared to algorithms that
predict only from clinical data, our results are close to the ones
obtained by [5] and [6]. However, while we consider the risk of
MI within a follow-up period of 5 years using a relatively small
dataset (≈500 patients) and only 11 clinical features, these works
present models developed with significantly larger datasets with
many more variables and predict the risk of MI within different
time intervals (shorter ones). More specifically, the work in [5]
reaches an F1-Score of 0.101 while predicting MI within the
next six months for 2 million patients with 8’000 features. The
work of [6] reaches an AUC of 0.72 while predicting MI within
12 months based on 7’000 patients and 192 features. These
comparisons suggest that the framework proposed in the current
study builds significantly on previous work and has the potential
to improve the accuracy of ML-driven predictions of future MI
significantly.

Importantly, we recognize that the generalisability of these
results to other clinical cohorts needs to be demonstrated due to
differing patient populations, as well as variance with respect to
the quality and nature of the clinical and imaging data. As such,
this study needs to be extended in future work.

V. CONCLUSION

In this work, we proposed a multimodal framework based on
deep learning, which exploits the knowledge of the main arteries
of the coronary tree, and the ICA images corresponding to each
of those, as well as clinical patient data in order to predict future
MI in patients with acute coronary syndromes. The ICA images
are processed by anatomy-guided CNNs, and the clinical patient
data is analysed by an ANN. Embeddings from both modalities
are then combined to finally provide a patient-level prediction.
Experimental results confirmed the superior performance of our
method in comparison to learning from each modality separately,
but also in comparison to human-based predictions from ex-
perienced interventional cardiologists. Although the numerical
results of this study should be considered with caution due to
the small number of MI patients, the performance obtained with

the current data is non-trivial. It indicates that the integration,
via a well-designed learning framework, of imaging, clinical
variables, and clinical expertise (including knowledge of the
coronary anatomy), has the potential to improve on current
approaches to the highly complex and challenging MI prediction
task.

However, at its current state, this solution does not exhibit
sufficiently high-performance levels for practical usage. A po-
tential advancement for enhancing performance involves explor-
ing attention mechanisms for integrating features from different
sources [21]. Alternatively, one could leverage the arterial struc-
ture to organize patches centered around the artery (and thus
get rid of the non-informative background) and then feed those
patches to transformers or Graph Neural Networks, which have
already shown promise in detecting severe stenosis [22] and
coronary plaques [23], respectively.
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